Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(2): 102811, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539036

RESUMO

The Na+/K+-ATPase is an integral plasma membrane glycoprotein of all animal cells that couples the exchange of intracellular Na+ for extracellular K+ to the hydrolysis of ATP. The asymmetric distribution of Na+ and K+ is essential for cellular life and constitutes the physical basis of a series of fundamental biological phenomena. The pumping mechanism is explained by the Albers-Post model. It involves the presence of gates alternatively exposing Na+/K+-ATPase transport sites to the intracellular and extracellular sides and includes occluded states in which both gates are simultaneously closed. Unlike for K+, information is lacking about Na+-occluded intermediates, as occluded Na+ was only detected in states incapable of performing a catalytic cycle, including two Na+-containing crystallographic structures. The current knowledge is that intracellular Na+ must bind to the transport sites and become occluded upon phosphorylation by ATP to be transported to the extracellular medium. Here, taking advantage of epigallocatechin-3-gallate to instantaneously stabilize native Na+-occluded intermediates, we isolated species with tightly bound Na+ in an enzyme able to perform a catalytic cycle, consistent with a genuine occluded state. We found that Na+ becomes spontaneously occluded in the E1 dephosphorylated form of the Na+/K+-ATPase, exhibiting positive interactions between binding sites. In fact, the addition of ATP does not produce an increase in Na+ occlusion as it would have been expected; on the contrary, occluded Na+ transiently decreases, whereas ATP lasts. These results reveal new properties of E1 intermediates of the Albers-Post model for explaining the Na+ transport pathway.


Assuntos
Biocatálise , ATPase Trocadora de Sódio-Potássio , Sódio , Animais , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Cinética , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Transporte de Íons , Fosforilação , Cátions Monovalentes/metabolismo
2.
Heliyon ; 7(2): e06337, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33681501

RESUMO

Flavonoids are natural compounds responsible for the health benefits of green tea. Some of the flavonoids present in green tea are catechins, among which are: epigallocatechin, epicatechin-3-gallate, epicatechin, catechin and epigallocatechin-3-gallate (EGCG). The latter was found to induce apoptosis, reduce reactive oxygen species, in some conditions though in others it acts as an oxidizing agent, induce cell cycle arrest, and inhibit carcinogenesis. EGCG also was found to be involved in calcium (Ca2+) homeostasis in excitable and in non-excitable cells. In this study, we investigate the effect of catechins on plasma membrane Ca2+-ATPase (PMCA), which is one of the main mechanisms that extrude Ca2+ out of the cell. Our studies comprised experiments on the isolated PMCA and on cells overexpressing the pump. Among catechins that inhibited PMCA activity, the most potent inhibitor was EGCG. EGCG inhibited PMCA activity in a reversible way favoring E1P conformation. EGCG inhibition also occurred in the presence of calmodulin, the main pump activator. Finally, the effect of EGCG on PMCA activity was studied in human embryonic kidney cells (HEK293T) that transiently overexpress hPMCA4. Results show that EGCG inhibited PMCA activity in HEK293T cells, suggesting that the effects observed on isolated PMCA occur in living cells.

3.
Biochim Biophys Acta Biomembr ; 1861(2): 366-379, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419189

RESUMO

The plasma membrane Ca2+­ATPase (PMCA) belongs to the family of P-type ATPases, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. The crystal structure of PMCA is currently lacking. Its abundance is approximately 0.1% of the total protein in the membrane, hampering efforts to produce suitable crystals for X-ray structure analysis. In this work we characterized the effect of beryllium fluoride (BeFx), aluminium fluoride (AlFx) and magnesium fluoride (MgFx) on PMCA. These compounds are known inhibitors of P-type ATPases that stabilize E2P ground, E2·P phosphoryl transition and E2·Pi product states. Our results show that the phosphate analogues BeFx, AlFx and MgFx inhibit PMCA Ca2+­ATPase activity, phosphatase activity and phosphorylation with high apparent affinity. Ca2+­ATPase inhibition by AlFx and BeFx depended on Mg2+ concentration indicating that this ion stabilizes the complex between these inhibitors and the enzyme. Low pH increases AlFx and BeFx but not MgFx apparent affinity. Eosin fluorescent probe binds with high affinity to the nucleotide binding site of PMCA. The fluorescence of eosin decreases when fluoride complexes bind to PMCA indicating that the environment of the nucleotide binding site is less hydrophobic in E2P-like states. Finally, measuring the time course of E → E2P-like conformational change, we proposed a kinetic model for the binding of fluoride complexes and vanadate to PMCA. In summary, our results show that these fluoride complexes reveal different states of phosphorylated intermediates belonging to the mechanism of hydrolysis of ATP by the PMCA.


Assuntos
ATPases Transportadoras de Cálcio/química , ATPases Transportadoras de Cálcio/metabolismo , Membrana Celular/enzimologia , Fluoretos/farmacologia , Vanadatos/farmacologia , Trifosfato de Adenosina/metabolismo , ATPases Transportadoras de Cálcio/antagonistas & inibidores , Calmodulina/metabolismo , Estabilidade Enzimática/efeitos dos fármacos , Amarelo de Eosina-(YS)/metabolismo , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Cinética , Magnésio/farmacologia , Fosfoproteínas Fosfatases/metabolismo , Fosforilação/efeitos dos fármacos , Conformação Proteica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fatores de Tempo , Água
4.
Biochim Biophys Acta Biomembr ; 1860(8): 1580-1588, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29859139

RESUMO

Aluminum (Al3+) is involved in the pathophysiology of neurodegenerative disorders. The mechanisms that have been proposed to explain the action of Al3+ toxicity are linked to changes in the cellular calcium homeostasis, placing the transporting calcium pumps as potential targets. The aim of this work was to study the molecular inhibitory mechanism of Al3+ on Ca2+-ATPases such as the plasma membrane and the sarcoplasmic reticulum calcium pumps (PMCA and SERCA, respectively). These P-ATPases transport Ca2+ actively from the cytoplasm towards the extracellular medium and to the sarcoplasmic reticulum, respectively. For this purpose, we performed enzymatic measurements of the effect of Al3+ on purified preparations of PMCA and SERCA. Our results show that Al3+ is an irreversible inhibitor of PMCA and a slowly-reversible inhibitor of SERCA. The binding of Al3+ is affected by Ca2+ in SERCA, though not in PMCA. Al3+ prevents the phosphorylation of SERCA and, conversely, the dephosphorylation of PMCA. The dephosphorylation time courses of the complex formed by PMCA and Al3+ (EPAl) in the presence of ADP or ATP show that EPAl is composed mainly by the conformer E2P. This work shows for the first time a distinct mechanism of Al3+ inhibition that involves different intermediates of the reaction cycle of these two Ca2+-ATPases.


Assuntos
Alumínio/química , Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/química , Membrana Celular/química , Concentração de Íons de Hidrogênio , Cinética , Magnésio/química , Músculo Esquelético/enzimologia , Coelhos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores
5.
J Biol Chem ; 293(4): 1373-1385, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29191836

RESUMO

Procedures to define kinetic mechanisms from catalytic activity measurements that obey the Michaelis-Menten equation are well established. In contrast, analytical tools for enzymes displaying non-Michaelis-Menten kinetics are underdeveloped, and transient-state measurements, when feasible, are therefore preferred in kinetic studies. Of note, transient-state determinations evaluate only partial reactions, and these might not participate in the reaction cycle. Here, we provide a general procedure to characterize kinetic mechanisms from steady-state determinations. We described non-Michaelis-Menten kinetics with equations containing parameters equivalent to kcat and Km and modeled the underlying mechanism by an approach similar to that used under Michaelis-Menten kinetics. The procedure enabled us to evaluate whether Na+/K+-ATPase uses the same sites to alternatively transport Na+ and K+ This ping-pong mechanism is supported by transient-state studies but contradicted to date by steady-state analyses claiming that the release of one cationic species as product requires the binding of the other (ternary-complex mechanism). To derive robust conclusions about the Na+/K+-ATPase transport mechanism, we did not rely on ATPase activity measurements alone. During the catalytic cycle, the transported cations become transitorily occluded (i.e. trapped within the enzyme). We employed radioactive isotopes to quantify occluded cations under steady-state conditions. We replaced K+ with Rb+ because 42K+ has a short half-life, and previous studies showed that K+- and Rb+-occluded reaction intermediates are similar. We derived conclusions regarding the rate of Rb+ deocclusion that were verified by direct measurements. Our results validated the ping-pong mechanism and proved that Rb+ deocclusion is accelerated when Na+ binds to an allosteric, nonspecific site, leading to a 2-fold increase in ATPase activity.


Assuntos
Modelos Químicos , Potássio/química , Rubídio/química , ATPase Trocadora de Sódio-Potássio/química , Sódio/química , Humanos , Transporte de Íons , Cinética
6.
Biochim Biophys Acta ; 1848(7): 1514-23, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25838127

RESUMO

The first X-ray crystal structures of the Na,K-ATPase were obtained in the presence of magnesium and fluoride as E2(K2)Mg-MgF4, an E2∙Pi-like state capable to occlude K(+) (or Rb(+)). This work presents a functional characterization of the crystallized form of the enzyme and proposes a model to explain the interaction between magnesium, fluoride and Rb(+) with the Na,K-ATPase. We studied the effect of magnesium and magnesium fluoride complexes on the E1-E2 conformational transition and the kinetics of Rb(+) exchange between the medium and the E2(Rb2)Mg-MgF4 state. Our results show that both in the absence and in the presence of Rb(+), simultaneous addition of magnesium and fluoride stabilizes the Na,K-ATPase in an E2 conformation, presumably the E2Mg-MgF4 complex, that is unable to shift to E1 upon addition of Na(+). The time course of conformational change suggests the action of fluoride and magnesium at different steps of the E2Mg-MgF4 formation. Increasing concentrations of fluoride revert along a sigmoid curve the drop in the level of occluded Rb(+) caused by Mg(2+). Na(+)-induced release of Rb(+) from E2(Rb2)Mg-MgF4 occurs at the same rate as from E2(Rb2) but is insensitive to ADP. The rate of Rb(+) occlusion into the E2Mg-MgF4 state is 5-8 times lower than that described for the E2Mg-vanadate complex. Since the E2Mg-MgF4 and E2Mg-vanadate complexes represent different intermediates in the E2-P→E2 dephosphorylation sequence, the variation in occlusion rate could provide a tool to discriminate between these intermediates.


Assuntos
Trifosfato de Adenosina/metabolismo , Fluoretos/metabolismo , Compostos de Magnésio/metabolismo , Potássio/metabolismo , Rubídio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/química , Animais , Estabilidade Enzimática , Fluoretos/química , Cinética , Compostos de Magnésio/química , Modelos Biológicos , Modelos Químicos , Potássio/química , Ligação Proteica , Conformação Proteica , Rubídio/química , ATPase Trocadora de Sódio-Potássio/química , Suínos , Fatores de Tempo
7.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 5): 1419-34, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24816110

RESUMO

Riboflavin synthase (RS) catalyzes the last step of riboflavin biosynthesis in microorganisms and plants, which corresponds to the dismutation of two molecules of 6,7-dimethyl-8-ribityllumazine to yield one molecule of riboflavin and one molecule of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione. Owing to the absence of this enzyme in animals and the fact that most pathogenic bacteria show a strict dependence on riboflavin biosynthesis, RS has been proposed as a potential target for antimicrobial drug development. Eubacterial, fungal and plant RSs assemble as homotrimers lacking C3 symmetry. Each monomer can bind two substrate molecules, yet there is only one active site for the whole enzyme, which is located at the interface between two neighbouring chains. This work reports the crystallographic structure of RS from the pathogenic bacterium Brucella abortus (the aetiological agent of the disease brucellosis) in its apo form, in complex with riboflavin and in complex with two different product analogues, being the first time that the structure of an intact RS trimer with bound ligands has been solved. These crystal models support the hypothesis of enhanced flexibility in the particle and also highlight the role of the ligands in assembling the unique active site. Kinetic and binding studies were also performed to complement these findings. The structural and biochemical information generated may be useful for the rational design of novel RS inhibitors with antimicrobial activity.


Assuntos
Brucella abortus/enzimologia , Riboflavina Sintase/química , Riboflavina Sintase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Riboflavina/química , Riboflavina Sintase/genética , Homologia de Sequência de Aminoácidos
8.
J Biol Chem ; 288(43): 31030-41, 2013 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-24025327

RESUMO

The aim of this work was to study the plasma membrane calcium pump (PMCA) reaction cycle by characterizing conformational changes associated with calcium, ATP, and vanadate binding to purified PMCA. This was accomplished by studying the exposure of PMCA to surrounding phospholipids by measuring the incorporation of the photoactivatable phosphatidylcholine analog 1-O-hexadecanoyl-2-O-[9-[[[2-[(125)I]iodo-4-(trifluoromethyl-3H-diazirin-3-yl)benzyl]oxy]carbonyl]nonanoyl]-sn-glycero-3-phosphocholine to the protein. ATP could bind to the different vanadate-bound states of the enzyme either in the presence or in the absence of Ca(2+) with high apparent affinity. Conformational movements of the ATP binding domain were determined using the fluorescent analog 2'(3')-O-(2,4,6-trinitrophenyl)adenosine 5'-triphosphate. To assess the conformational behavior of the Ca(2+) binding domain, we also studied the occlusion of Ca(2+), both in the presence and in the absence of ATP and with or without vanadate. Results show the existence of occluded species in the presence of vanadate and/or ATP. This allowed the development of a model that describes the transport of Ca(2+) and its relation with ATP hydrolysis. This is the first approach that uses a conformational study to describe the PMCA P-type ATPase reaction cycle, adding important features to the classical E1-E2 model devised using kinetics methodology only.


Assuntos
Trifosfato de Adenosina/química , Membrana Eritrocítica/enzimologia , Modelos Químicos , ATPases Transportadoras de Cálcio da Membrana Plasmática/química , Trifosfato de Adenosina/metabolismo , Membrana Eritrocítica/química , Humanos , Transporte de Íons/fisiologia , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Estrutura Terciária de Proteína
9.
Biochim Biophys Acta ; 1828(5): 1374-83, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23357355

RESUMO

A comprehensive study of the interaction between Na(+) and K(+) with the Na(+)/K(+)-ATPase requires dissecting the incidence of alternative cycling modes on activity measurements in which one or both of these cations are absent. With this aim, we used membrane fragments containing pig-kidney Na(+)/K(+)-ATPase to perform measurements, at 25°C and pH=7.4, of ATPase activity and steady-state levels of (i) intermediates containing occluded Rb(+) at different [Rb(+)] in media lacking Na(+), and (ii) phosphorylated intermediates at different [Na(+)] in media lacking Rb(+). Most relevant results are: (1) Rb(+) can be occluded through an ATPasic cycling mode that takes place in the absence of Na(+) ions, (2) the kinetic behavior of the phosphoenzyme formed by ATP in the absence of Na(+) is different from the one that is formed with Na(+), and (3) binding of Na(+) to transport sites during catalysis is not at random unless rapid equilibrium holds.


Assuntos
Trifosfato de Adenosina/metabolismo , Medula Renal/enzimologia , Rubídio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sódio/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Biocatálise/efeitos dos fármacos , Relação Dose-Resposta a Droga , Cinética , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Rubídio/farmacologia , Sódio/farmacologia , Suínos
10.
Cell Biochem Biophys ; 66(1): 187-98, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23152090

RESUMO

We have previously shown that plasma membrane calcium ATPase (PMCA) pump activity is affected by the membrane protein concentration (Vanagas et al., Biochim Biophys Acta 1768:1641-1644, 2007). The results of this study provided evidence for the involvement of the actin cytoskeleton. In this study, we explored the relationship between the polymerization state of actin and its effects on purified PMCA activity. Our results show that PMCA associates with the actin cytoskeleton and this interaction causes a modulation of the catalytic activity involving the phosphorylated intermediate of the pump. The state of actin polymerization determines whether it acts as an activator or an inhibitor of the pump: G-actin and/or short oligomers activate the pump, while F-actin inhibits it. The effects of actin on PMCA are the consequence of direct interaction as demonstrated by immunoblotting and cosedimentation experiments. Taken together, these findings suggest that interactions with actin play a dynamic role in the regulation of PMCA-mediated Ca(2+) extrusion through the membrane. Our results provide further evidence of the activation-inhibition phenomenon as a property of many cytoskeleton-associated membrane proteins where the cytoskeleton is no longer restricted to a mechanical function but is dynamically involved in modulating the activity of integral proteins with which it interacts.


Assuntos
Actinas/química , Sinalização do Cálcio , ATPases Transportadoras de Cálcio/química , Cálcio/química , Membrana Eritrocítica/enzimologia , Citoesqueleto de Actina , Actinas/classificação , Ativação Enzimática , Membrana Eritrocítica/química , Eritrócitos/química , Eritrócitos/enzimologia , Humanos , Proteínas de Membrana/química , Fosforilação , Polimerização , Conformação Proteica
11.
Biochim Biophys Acta ; 1818(9): 2087-93, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22521366

RESUMO

This work presents a detailed kinetic study that shows the coupling between the E2→E1 transition and Rb(+) deocclusion stimulated by Na(+) in pig-kidney purified Na,K-ATPase. Using rapid mixing techniques, we measured in parallel experiments the decrease in concentration of occluded Rb(+) and the increase in eosin fluorescence (the formation of E1) as a function of time. The E2→E1 transition and Rb(+) deocclusion are described by the sum of two exponential functions with equal amplitudes, whose rate coefficients decreased with increasing [Rb(+)]. The rate coefficient values of the E2→E1 transition were very similar to those of Rb(+)-deocclusion, indicating that both processes are simultaneous. Our results suggest that, when ATP is absent, the mechanism of Na(+)-stimulated Rb(+) deocclusion would require the release of at least one Rb(+) ion through the extracellular access prior to the E2→E1 transition. Using vanadate to stabilize E2, we measured occluded Rb(+) in equilibrium conditions. Results show that, while Mg(2+) decreases the affinity for Rb(+), addition of vanadate offsets this effect, increasing the affinity for Rb(+). In transient experiments, we investigated the exchange of Rb(+) between the E2-vanadate complex and the medium. Results show that, in the absence of ATP, vanadate prevents the E2→E1 transition caused by Na(+) without significantly affecting the rate of Rb(+) deocclusion. On the other hand, we found the first evidence of a very low rate of Rb(+) occlusion in the enzyme-vanadate complex, suggesting that this complex would require a change to an open conformation in order to bind and occlude Rb(+).


Assuntos
Rim/metabolismo , Rubídio/farmacologia , ATPase Trocadora de Sódio-Potássio/química , Vanadatos/farmacologia , Trifosfato de Adenosina/química , Animais , Biofísica/métodos , Amarelo de Eosina-(YS)/química , Cinética , Magnésio/química , Modelos Biológicos , Ligação Proteica , Conformação Proteica , Rubídio/química , Suínos , Fatores de Tempo , Vanadatos/química
12.
J Biol Chem ; 286(37): 32018-25, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21795697

RESUMO

In this work, we set out to identify and characterize the calcium occluded intermediate(s) of the plasma membrane Ca(2+)-ATPase (PMCA) to study the mechanism of calcium transport. To this end, we developed a procedure for measuring the occlusion of Ca(2+) in microsomes containing PMCA. This involves a system for overexpression of the PMCA and the use of a rapid mixing device combined with a filtration chamber, allowing the isolation of the enzyme and quantification of retained calcium. Measurements of retained calcium as a function of the Ca(2+) concentration in steady state showed a hyperbolic dependence with an apparent dissociation constant of 12 ± 2.2 µM, which agrees with the value found through measurements of PMCA activity in the absence of calmodulin. When enzyme phosphorylation and the retained calcium were studied as a function of time in the presence of La(III) (inducing accumulation of phosphoenzyme in the E(1)P state), we obtained apparent rate constants not significantly different from each other. Quantification of EP and retained calcium in steady state yield a stoichiometry of one mole of occluded calcium per mole of phosphoenzyme. These results demonstrate for the first time that one calcium ion becomes occluded in the E(1)P-phosphorylated intermediate of the PMCA.


Assuntos
Cálcio/metabolismo , Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Linhagem Celular , Humanos , Transporte de Íons/fisiologia , Fosforilação/fisiologia , ATPases Transportadoras de Cálcio da Membrana Plasmática/genética , Spodoptera
13.
Curr Chem Biol ; 5(2): 118-129, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21691422

RESUMO

Although membrane proteins constitute more than 20% of the total proteins, the structures of only a few are known in detail. An important group of integral membrane proteins are ion-transporting ATPases of the P-type family, which share the formation of an acid-stable phosphorylated intermediate as part of their reaction cycle. There are several crystal structures of the sarcoplasmic reticulum Ca(2+) pump (SERCA) revealing different conformations, and recently, crystal structures of the H(+)-ATPase and the Na(+)/K(+)-ATPase were reported as well. However, there are no atomic resolution structures for other P-type ATPases including the plasma membrane calcium pump (PMCA), which is integral to cellular Ca(2+) signaling. Crystallization of these proteins is challenging because there is often no natural source from which the protein can be obtained in large quantities, and the presence of multiple isoforms in the same tissue further complicates efforts to obtain homogeneous samples suitable for crystallization. Alternative techniques to study structural aspects and conformational transitions in the PMCAs (and other P-type ATPases) have therefore been developed. Specifically, information about the structure and assembly of the transmembrane domain of an integral membrane protein can be obtained from an analysis of the lipid-protein interactions. Here, we review recent efforts using different hydrophobic photo-labeling methods to study the non-covalent interactions between the PMCA and surrounding phospholipids under different experimental conditions, and discuss how the use of these lipid probes can reveal valuable information on the membrane organization and conformational state transitions in the PMCA, Na(+)/K(+)-ATPase, and other P-type ATPases.

14.
FEBS Lett ; 585(8): 1153-7, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21419126

RESUMO

Annular lipid-protein stoichiometry in native pig kidney Na+/K+ -ATPase preparation was studied by [125I]TID-PC/16 labeling. Our data indicate that the transmembrane domain of the Na+/K+ -ATPase in the E1 state is less exposed to the lipids than in E2, i.e., the conformational transitions are accompanied by changes in the number of annular lipids but not in the affinity of these lipids for the protein. The lipid-protein stoichiometry was 23 ± 2 (α subunit) and 5.0 ± 0.4 (ß subunit) in the E1 conformation and 32 ± 2 (α subunit) and 7 ± 1 (ß subunit) in the E2 conformation.


Assuntos
Rim/enzimologia , Lipídeos/química , ATPase Trocadora de Sódio-Potássio/química , Animais , Sítios de Ligação , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Conformação Proteica , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
15.
Biochim Biophys Acta ; 1808(1): 316-22, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20826127

RESUMO

Despite its similarity with the Na(+)/K(+)-ATPase, it has not been possible so far to isolate a K(+)-occluded state in the H(+)/K(+)-ATPase at room temperature. We report here results on the time course of formation of a state containing occluded Rb(+) (as surrogate for K(+)) in H(+)/K(+)-ATPase from gastric vesicles at 25°C. Alamethicin (a pore-forming peptide) showed to be a suitable agent to open vesicles, allowing a more efficient removal of Rb(+) ions from the intravesicular medium than C(12)E(8) (a non-ionic detergent). In the presence of vanadate and Mg(2+), the time course of [(86)Rb]Rb(+) uptake displayed a fast phase due to Rb(+) occlusion. The specific inhibitor of the H(+)/K(+)-ATPase SCH28080 significantly reduces the amount of Rb(+) occluded in the vanadate-H(+)/K(+)-ATPase complex. Occluded Rb(+) varies with [Rb(+)] according to a hyperbolic function with K(0.5)=0.29±0.06mM. The complex between the Rb(+)-occluded state and vanadate proved to be very stable even after removal of free Mg(2+) with EDTA. Our results yield a stoichiometry lower than one occluded Rb(+) per phosphorylation site, which might be explained assuming that, unlike for the Na(+)/K(+)-ATPase, Mg(2+)-vanadate is unable to recruit all the Rb(+)-bound to the Rb(+)-occluded form of the Rb(+)-vanadate-H(+)/K(+)-ATPase complex.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/química , Rubídio/química , Estômago/enzimologia , Vanadatos/química , Alameticina/química , Alameticina/farmacologia , Animais , Detergentes/química , Inibidores Enzimáticos/farmacologia , Íons , Ligantes , Peptídeos/química , Fosforilação , Suínos , Temperatura , Fatores de Tempo
16.
Biochemistry ; 48(34): 8105-19, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19621894

RESUMO

This study examined how the quaternary organic ammonium ion, benzyltriethylamine (BTEA), binds to the Na,K-ATPase to produce membrane potential (V(M))-dependent inhibition and tested the prediction that such a V(M)-dependent inhibitor would display electrogenic binding kinetics. BTEA competitively inhibited K(+) activation of Na,K-ATPase activity and steady-state (86)Rb(+) occlusion. The initial rate of (86)Rb(+) occlusion was decreased by BTEA to a similar degree whether it was added to the enzyme prior to or simultaneously with Rb(+), a demonstration that BTEA inhibits the Na,K-ATPase without being occluded. Several BTEA structural analogues reversibly inhibited Na,K-pump current, but none blocked current in a V(M)-dependent manner except BTEA and its para-nitro derivative, pNBTEA. Under conditions that promoted electroneutral K(+)-K(+) exchange by the Na,K-ATPase, step changes in V(M) elicited pNBTEA-activated ouabain-sensitive transient currents that had similarities to those produced with the K(+) congener, Tl(+). pNBTEA- and Tl(+)-dependent transient currents both displayed saturation of charge moved at extreme negative and positive V(M), equivalence of charge moved during and after step changes in V(M), and similar apparent valence. The rate constant (k(tot)) for Tl(+)-dependent transient current asymptotically approached a minimum value at positive V(M). In contrast, k(tot) for pNBTEA-dependent transient current was a "U"-shaped function of V(M) with a minimum value near 0 mV. Homology models of the Na,K-ATPase alpha subunit suggested that quaternary amines can bind to two extracellularly accessible sites, one of them located at K(+) binding sites positioned between transmembrane helices 4, 5, and 6. Altogether, these data revealed important information about electrogenic ion binding reactions of the Na,K-ATPase that are not directly measurable during ion transport by this enzyme.


Assuntos
Inibidores Enzimáticos/metabolismo , Espaço Extracelular/metabolismo , Compostos de Amônio Quaternário/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Sítios de Ligação , Cães , Condutividade Elétrica , Inibidores Enzimáticos/farmacologia , Espaço Extracelular/efeitos dos fármacos , Potenciais da Membrana , Modelos Biológicos , Modelos Moleculares , Nitrocompostos/química , Nitrocompostos/farmacologia , Potássio/metabolismo , Ligação Proteica , Conformação Proteica , Compostos de Amônio Quaternário/farmacologia , Coelhos , Ratos , Rubídio/metabolismo , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/química , Fatores de Tempo
17.
Biochemistry ; 47(22): 6073-80, 2008 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-18465842

RESUMO

Occlusion of K (+) in the Na (+)/K (+)-ATPase can be achieved under two conditions: during hydrolysis of ATP, in media with Na (+) and Mg (2+), after the K (+)-stimulated dephosphorylation of E2P (physiological route) or spontaneously, after binding of K (+) to the enzyme (direct route). We investigated the sidedness of spontaneous occlusion and deocclusion of Rb (+) in an unsided, purified preparation of Na (+)/K (+)-ATPase. Our studies were based on two propositions: (i) in the absence of ATP, deocclusion of K (+) and its congeners is a sequential process where two ions are released according to a single file mechanism, both in the absence and in the presence of Mg (2+) plus inorganic orthophosphate (Pi), and (ii) in the presence of Mg (2+) plus Pi, exchange of K (+) would take place through sites exposed to the extracellular surface of the membrane. The experiments included a double incubation sequence where one of the two Rb (+) ions was labeled as (86)Rb (+). We found that, when the enzyme is in the E2 conformation, the first Rb (+) that entered the enzyme in media without Mg (2+) and Pi was the last to leave after addition of Mg (2+) plus Pi, and vice-versa. This indicates that spontaneous exchange of Rb (+) between E2(Rb 2) and the medium takes place when the transport sites are exposed to the extracellular surface of the membrane. Our results open the question if occlusion and deocclusion via the direct route participates in any significant degree in the transport of K (+) during the ATPase activity.


Assuntos
Rubídio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , Animais , Sítios de Ligação , Rim/enzimologia , Cinética , Ligantes , Magnésio/metabolismo , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Suínos
18.
Biochim Biophys Acta ; 1768(6): 1641-9, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17481573

RESUMO

Plasma membrane calcium pumps (PMCAs) are integral membrane proteins that actively expel Ca(2+) from the cell. Specific Ca(2+)-ATPase activity of erythrocyte membranes increased steeply up to 1.5-5 times when the membrane protein concentration decreased from 50 microg/ml to 1 microg/ml. The activation by dilution was also observed for ATP-dependent Ca(2+) uptake into vesicles from Sf9 cells over-expressing the PMCA 4b isoform, confirming that it is a property of the PMCA. Dilution of the protein did not modify the activation by ATP, Ca(2+) or Ca(2+)-calmodulin. Treatment with non-ionic detergents did not abolish the dilution effect, suggesting that it was not due to resealing of the membrane vesicles. Pre-incubation of erythrocyte membranes with Cytochalasin D under conditions that promote actin polymerization abolished the dilution effect. Highly-purified, micellar PMCA showed no dilution effect and was not affected by Cytochalasin D. Taken together, these results suggest that the concentration-dependent behavior of the PMCA activity was due to interactions with cytoskeletal proteins. The dilution effect was also observed with different PMCA isoforms, indicating that this is a general phenomenon for all PMCAs.


Assuntos
Membrana Celular/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Animais , Transporte Biológico/fisiologia , Cálcio/metabolismo , Linhagem Celular , Citocalasina D , Eletroforese em Gel de Poliacrilamida , Eritrócitos/citologia , Humanos , Spodoptera
19.
Biochemistry ; 46(4): 1034-41, 2007 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-17240987

RESUMO

The plasma membrane calcium ATPase (PMCA) reacts with ATP to form acid-stable phosphorylated intermediates (EP) that can be measured using (gamma-32P)ATP. However, the steady-state level of EP at [ATP] higher than 100 microM has not yet been studied due to methodological problems. Using a microscale method and a purified preparation of PMCA from human red blood cells, we measured the steady-state concentration of EP as a function of [ATP] up to 2 mM at different concentrations of Mg2+, both at 4 and 25 degrees C. We have measured the Ca2+-ATPase activity (v) under the same conditions as those used for phosphorylation experiments. While the curves of ATPase activity vs [ATP] were well described by the Michaelis-Menten equation, the corresponding curves of EP required more complex fitting equations, exhibiting at least a high- and a low-affinity component. Mg2+ increases the apparent affinity for ATP of this latter component, but it shows no significant effect on its high-affinity one or on the Ca2+-ATPase activity. We calculated the turnover of EP (k(pEP)) as the ratio v/EP. At 1 mM Mg2+, k(pEP) increases hyperbolically with [ATP], while at 8 microM Mg2+, it exhibits a behavior that cannot be explained by the currently accepted mechanism for ATP hydrolysis. These results, together with measurements of the rate of dephosphorylation at 4 degrees C, suggest that ATP is acting in additional steps involving the interconversion of phosphorylated intermediates during the hydrolysis of the nucleotide.


Assuntos
Trifosfato de Adenosina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Membrana Eritrocítica/enzimologia , Humanos , Hidrólise , Técnicas In Vitro , Cinética , Magnésio/metabolismo , Modelos Biológicos , Fosforilação , ATPases Transportadoras de Cálcio da Membrana Plasmática/sangue , ATPases Transportadoras de Cálcio da Membrana Plasmática/química
20.
Biochemistry ; 45(43): 13093-100, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17059226

RESUMO

We used suspensions of partially purified Na(+)/K(+)-ATPase from pig kidney to compare the effects of Rb(+), as a K(+) congener, on the time course and on the equilibrium values of eosin fluorescence and of Rb(+) occlusion. Both sets of data were collected under identical conditions in the same enzyme preparations. The incubation media lacked ATP so that all changes led to an equilibrium distribution between enzyme conformers with and without bound eosin and with and without bound or occluded Rb(+). Results showed that as Rb(+) concentration was increased, the equilibrium value of fluorescence decreased and occlusion increased along rectangular hyperbolas with similar half-maximal values. The time courses of attainment of equilibrium showed an initial phase which was so quick as to fall below the time resolution of our rapid-mixing apparatus. This phase was followed by the sum of at least two exponential functions of time. In the case of fluorescence the fast exponential term accounted for a larger fraction of the time course than in the case of occlusion. Comparison between experimental and simulated results suggests that fluorescence changes express a process that is coupled to Rb(+) occlusion but that is completed before occlusion reaches equilibrium.


Assuntos
Amarelo de Eosina-(YS)/química , Rubídio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Algoritmos , Animais , Amarelo de Eosina-(YS)/metabolismo , Fluorescência , Transporte de Íons/efeitos dos fármacos , Cinética , Modelos Químicos , Ligação Proteica , Rubídio/metabolismo , Rubídio/farmacologia , ATPase Trocadora de Sódio-Potássio/química , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...